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Abstract

Heart failure encompasses a heterogeneous set of clinical features that converge on

impaired cardiac contractile function  and presents a growing public health concern.

Previous work has highlighted changes in both transcription and protein expression in

failing hearts , but may overlook molecular changes in less prevalent cell types. Here

we identify extensive molecular alterations in failing hearts at single-cell resolution by

performing single-nucleus RNA sequencing of nearly 600,000 nuclei in left ventricle

samples from 11 hearts with dilated cardiomyopathy and 15 hearts with hypertrophic

cardiomyopathy as well as 16 non-failing hearts. The transcriptional profiles of dilated

or hypertrophic cardiomyopathy hearts broadly converged at the tissue and cell-type

level. Further, a subset of hearts from patients with cardiomyopathy harbour a unique

population of activated fibroblasts that is almost entirely absent from non-failing

samples. We performed a CRISPR-knockout screen in primary human cardiac fibroblasts

to evaluate this fibrotic cell state transition; knockout of genes associated with
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fibroblast transition resulted in a reduction of myofibroblast cell-state transition upon

TGFβ1 stimulation for a subset of genes. Our results provide insights into the

transcriptional diversity of the human heart in health and disease as well as new

potential therapeutic targets and biomarkers for heart failure.
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Data availability

Processed single-nucleus transcriptomic data are available through the Broad Institute’s

Single Cell Portal (https://singlecell.broadinstitute.org/single_cell) under project ID

SCP1303 (https://singlecell.broadinstitute.org/single_cell/study/SCP1303/). Raw

sequence data are available to authorized users through dbGaP (the database of

Genotypes and Phenotypes) accession number phs001539. Use of the raw sequencing

data is limited to health, medical and/or biomedical purposes, including methods

development research. Source data are provided with this paper.
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Extended data figures and tables

Extended Data Fig. 1 Sample quality control assessment.

https://www.nature.com/articles/s41586-022-04817-8/figures/5


a, Distribution of key quality control metrics from CellRanger count as boxplots

stratified by non-failing (NF, n = 32), dilated cardiomyopathy (DCM, n = 24), and

hypertrophic cardiomyopathy (HCM, n = 32). Cutoffs for low quality are shown by the

dashed line, and samples that fail on a given metric are labeled. Center line, median; box

limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. b,

Exemplar high quality UMI (unique molecular identifier) decay curves (green) and low

quality UMI decay curves (red) are shown. Cell barcodes are ranked by the total UMI. c,

Total counts from Y chromosome transcripts in phenotypically classified females (red)

and males (blue) across all samples (n = 88).

Source data

Extended Data Fig. 2 Nuclei quality control assessment.
a, Uniform manifold and projection (UMAP) representation of all CellBender non-empty

droplets (n = 885,944), colored by Leiden clustering. b, Distribution of the median of

four quality control metrics across clusters (n = 47) in a as boxplots, including percent of

unique molecular identifiers mapping to mitochondrial genes (%MT), fraction of reads

mapping exclusively to exons (Exonic fraction), entropy, and Scrublet estimated

doublet score. Outlier clusters removed based on the criteria are highlighted in red.

Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile

range; points, outliers. c, Distribution of number of unique molecular identifiers

(nUMI), number of unique genes (nGene), %MT, and entropy across nuclei of each

unique cell type (n = 13). Center line, median; box limits, upper and lower quartiles;

whiskers, 1.5x interquartile range. d, UMAP representation of non-empty droplets after

removal of low-quality clusters identified in a and b (n = 745,342). Additional low-quality

nuclei as detected per cluster and per-sample are colored in red. e, Proportion of each

sample (top, n = 80) and cluster (bottom, n = 47) removed during the quality control

procedure. f, UMAP representation of non-empty droplets after removal of low-quality

clusters and per-cluster quality control (n = 605,314). Red nuclei were deemed as

misclassified or low-quality nuclei based on sub-cluster analysis within each cluster. g,

The average score for each sub-cluster (x-axis) based on marker genes for each major

cell type (y-axis), see Methods. When a sub-cluster scores highly for an unrelated cell

https://www.nature.com/articles/s41586-022-04817-8/figures/6


type (black border), it was removed. CM, Cardiomyocyte; FB, Fibroblast; EC,

Endothelial; PC, Pericyte; MP, Macrophage; VSMC, Vascular smooth muscle cell; LC,

Lymphocyte; EndoC, Endocardial; AD, Adipocyte; NRN, Neuronal; LEC, Lymphatic

endothelial; ActFB, Activated fibroblast; MC, Mast Cell; ProfMP, Proliferating

macrophage; EpiC, Epicardial; MT, Mitochondrial.

Source data

Extended Data Fig. 3 Marker genes and cell type clustering.
a, Dot plots showing the expression profile of the top 4 marker genes for each cell type

in single nuclei RNA-sequencing data (n = 592,689). The size of the dot reflects the

percent of nuclei expressing the gene at non-zero levels and the shade reflects the mean

log-normalized expression. b, Hierarchical clustering of cell types and expression

profiles of the top 2,000 most highly variable genes. Avg Expr, Average log-normalized

expression; Pct Nuclei Expr > 0, Percent of nuclei expressing the gene at non-zero levels;

VSMC, Vascular smooth muscle cell.

Source data

Extended Data Fig. 4 Compositional changes of global cell types.
Proportion of each cell type across patients stratified by disease status. Statistically

credible changes in cell types comparing dilated cardiomyopathy (n = 11) or

hypertrophic cardiomyopathy (n = 15) to non-failing patients (n = 16), as tested with

scCODA, are denoted with a *, see Methods. Less prevalent cell types are shown in inset

to improve readability. Center line, median; box limits, upper and lower quartiles;

whiskers, 1.5x interquartile range; VSMC, vascular smooth muscle cell.

Source data

Extended Data Fig. 5 Sample-level principal component analysis by cell type.
Principal component analysis (PCA) using the top 500 most highly variables genes after

summing expression counts for each sample (n  = 16, n  = 11, n  = 7, n  = 

8), for pseudo-bulk (a), cardiomyocyte (b), fibroblast (c), endothelial cell I (d), pericyte

(e), macrophage (f), vascular smooth muscle cell (VSMC) (g), and lymphocyte (h). The

NF DCM HCMrEF HCMpEF
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analysis was performed across all samples (left) and restricted to cardiomyopathy

samples (right). The percent of total variation for each principal component (PC) is

shown in parentheses. DCM, Dilated cardiomyopathy; HCMrEF, Hypertrophic

cardiomyopathy with reduced ejection fraction; HCMpEF, Hypertrophic

cardiomyopathy with preserved ejection fraction; LVEF, left ventricular ejection

fraction.

Source data

Extended Data Fig. 6 Whole genome sequencing analysis of cardiomyopathy
patients.
a, Number of deleterious variant carriers of known clinical cardiomyopathy testing

panel genes by disease state (n  = 10, n  = 15, n  = 15). Grey indicates patients with

no loss-of-function (LOF) or pathogenic variant in known cardiomyopathy genes. b, c, d

Volcano plots displaying the log fold-change (log(FC)) and two-sided p-value from a

limma-voom differential expression analysis between dilated cardiomyopathy (DCM)

TTN LOF carriers and DCM non-carriers (n = 4 vs 6) (b), hypertrophic cardiomyopathy

(HCM) MYBPC3 LOF carriers and HCM non-carriers (n = 3 vs 12) (c), and HCM MYH7

pathogenic variant carriers and HCM non-carriers (n = 5 vs 10) (d) based on CellBender

remove-background counts. Dots are colored by cell type with outlined dots

representing genes with FDR < 0.01 as calculated with the Benjamini-Hochberg

procedure. Only genes deemed to have a low probability of background contamination

are displayed. VSMC, vascular smooth muscle cell.

Source data

DCM HCM NF

Extended Data Fig. 7 Sub-clustering of abundant cell types.
a-f, Sub-clustering results for cardiomyocytes (n = 158,469) (a), fibroblasts (n = 147,219)

(b), endothelial cells (n = 112,977) (c), pericytes (n = 69,304) (d), vascular smooth muscle

cells (VSMC, n = 18,137) (e), and lymphocytes (n = 16,246) (f). Uniform manifold

approximation and projection (UMAP) visualization colored by Leiden clusters is shown

on the left. The distribution of sub-populations across patients by disease status

represented as box plots with statistically credible changes indicated with a * (middle,

https://www.nature.com/articles/s41586-022-04817-8/figures/10
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see Methods). Sub-population labels are colored as in the UMAP visualization. Center

line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range;

points, outliers. Dot plots of the most selective markers for each sub-population

compared to all other sub-populations (right). The size of the dot reflects the percent of

nuclei expressing the gene at non-zero levels and the shade reflects the mean log-

normalized expression. Avg norm expr, Average log-normalized expression scaled to

the max value for each gene; Pct Nuclei Expr > 0, Percent of nuclei expressing the gene at

non-zero levels; Act. FB, Activated fibroblast; L-EC, Lymphatic endothelial.

Source data

Extended Data Fig. 8 Macrophage sub-populations.
a, Uniform manifold approximation and projection (UMAP) representation of 53,730

nuclei classified as macrophage or proliferating macrophage in the global analysis

colored by sub-population. b, UMAP plot with the S phase cell cycle score overlaid

(see Methods). c, UMAP plot with the G2M phase cell cycle score overlaid (see Methods).

d, Expression of markers for each sub-population. The size of each dot reflects the

percent of nuclei expressing the gene at non-zero levels and the shade reflects the mean

log-normalized expression. e, Distribution of macrophage sub-populations across

patients (n  = 11, n  = 15, n  = 16) by disease status, with statistically credible

differences denoted with a *, see Methods. Center line, median; box limits, upper and

lower quartiles; whiskers, 1.5x interquartile range; points, outliers. f, Representative

immunofluorescence staining for macrophage marker CD163, cycling marker MKI67,

and nuclei with DAPI from single tissue sections of four patients. The percent of

macrophages with MKI67 expression across full tissue sections are shown on each

image. g, Dendrogram demonstrating similarity of sub-population centroids based on

the top 2000 most highly variable genes using Euclidean distance and the Ward

method. h-i, Expression of marker genes for CCR2 positive (CCR2+) (h) and CCR2

negative (CCR2-) (i) cardiac macrophages obtained from Bajpai et al., 2018 . The size of

each square represents the percent of nuclei expressing the gene at non-zero levels

while the shade represents a log fold-change (log(FC)) estimate comparing the

expression in the given sub-population to all other sub-populations. Genes significantly

DCM HCM NF
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up- or down-regulated in a sub-population (FDR < 0.01, as calculated with the Benjamini-

Hochberg procedure) are shown with a black border. Mφ, Macrophage; NF, Non-failing;

DCM, Dilated cardiomyopathy; HCM, Hypertrophic cardiomyopathy; Pct nuclei expr > 

0; Avg norm expr, Average normalized expression scaled to the max expression for each

gene across all sub-populations.

Source data

Extended Data Fig. 9 Imaging validation.
a, Additional immunofluorescence staining of four patients for macrophage marker

CD163 and cycling marker MKI67 from single tissue sections of each patient shown in

Extended Data Fig. 8f. Images are displayed both with, and without, DAPI to allow better

visualizing of cells co-expressing CD163 and MKI67. b,in situ hybridization with

RNAscope showing localization of canonical fibroblast marker, DCN (green/blue), and

activated fibroblast marker, COL22A1 (red), across several images of a single section

from each of four patients: dilated cardiomyopathy patient P1304, hypertrophic

cardiomyopathy patient P1425, and non-failing patients P1515 and P1516. Nuclear

localization is shown with hematoxylin (blue). Negative control sections are shown in

the second row for each sample. NF, non-failing; DCM, dilated cardiomyopathy; HCM,

hypertrophic cardiomyopathy.

Extended Data Fig. 10 Validation of computational deconvolution analysis
for activated fibroblasts.
a, in situ hybridization with RNAscope showing localization of canonical fibroblast

marker DCN (green/blue), and activated fibroblast marker COL22A1 (red), across single

sections derived from 6 patients. Nuclear localization is shown with hematoxylin (blue).

The computationally predicted percent of activated fibroblasts from CIBERSORTx (%

Act. FB) for each patient is shown above their respective image. b, c, Uniform manifold

and projection representation of all nuclei from both the primary analysis (n  = 42)

and validation single-nuclei RNA-sequencing (n  = 3) (b), and separately for

validation samples alone (c). The total number of patients (n_patients) and total nuclei

(n_nuclei) are shown above each respective figure. d, Relative contribution of fibroblasts

patient

patient
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and activated fibroblasts to each primary analysis patient (left) and validation patients

only (right). DCM, Dilated cardiomyopathy; HCM, Hypertrophic cardiomyopathy; NF,

Non-failing; VSMC, Vascular smooth muscle cell.

Source data

Extended Data Fig. 11 Replication of cardiac fibroblast activation assay
across up to five screens.
The percent change in the fraction of myofibroblasts across up to five screens for each

sgRNA (independent sgRNAs denoted as “G”). Within each screen, well values were

normalized to the median effect of TGFBR1 sgRNAs and non-targeting control sgRNAs.

The specific screen replicate (Rep.) is shown above each respective bar where “P”

indicates the primary screen, and r1-r4 indicate replicate screens 1–4. The number of

wells included in each screen (Nwell) are displayed below each bar with individual dots

displayed for each well value. Error bars depict standard error to the mean.

Source data

Extended Data Fig. 12 Global expression profiles of genes included in the
cardiac fibroblast activation assay.
Dot plot representation of expression profiles (n  = 42; n  = 592,689) of all genes

included in cardiac fibroblast activation assay. The size of the dot reflects the percent of

nuclei expressing the gene at non-zero levels and the shade reflects the mean log-

normalized expression. Avg expr, Average log-normalized expression; Pct nuclei expr > 

0, Percent of nuclei expressing the gene at non-zero levels; VSMC, Vascular smooth

muscle cell.

Source data

patient nuclei
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